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Successive approximation

x ′(t) = f (t, x(t)), x ∈ I ,(1)

x(ξ) = η(2)

The initial value problem (1)-(2) is equivalent to the integral equation:

x(t) = η +

t∫
ξ

f (s, x(s)) ds

︸ ︷︷ ︸
(Tx)(t)

.

Operator T fulfils the assumptions of Banach fixed point theorem if f
fulfils the assumptions of Picard-Lindelöf theorem. The unique fixed
point of T will be the unique solution of the initial value problem (1)-(2).
Like in the case of nonlinear equations the nth iterate will be an
approximate solution of the initial value problem.

x0(t) = η, xn+1(t) = T (xn(t))
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Successive approximation

Example

Let’s consider the initial value problem

x ′ = x , x(0) = 1.

Its unique solution is x(t) = et . Then ξ = 0, η = 1, x0(t) = 1.

x1(t) = 1 +

t∫
0

1 ds = 1 + t, x2(t) = 1 +

t∫
0

1 + s ds = 1 + t +
t2

2
,

and

xn(t) = 1 +

t∫
0

1 + s + · · ·+ sn−1

(n − 1)!
ds = 1 + t + · · ·+ tn

n!
,

which is exactly the nth partial sum of et .
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Successive approximation

Exercises
Find the approximate solutions of the initial value problems using
successive approximation!

ẋ = 2x − t, x(0) = 1,

y ′ = y(3− y), x(0) = 1,

y ′(t) = −y(t) + cos(t), y(0) = 0,

ẋ = 2x − t, x(1) = 1.

Pál Burai Mathematics for Engineers II. lectures



Taylor series method, Euler’s method

Reminder

Taylor’ theorem: Let f : [a, b]→ R be an (n + 1) times continuously
differentiable function on ]a, b[, the nth derivative is continuous on [a, b],
then for arbitrary x̄ , x ∈ [a, b] there is a β between x and x̄ such that

f (x) = f (x̄) +
f ′(x̄)

1!
(x − x̄) + · · ·+ f (n)(x̄)

n!
(x − x̄)n︸ ︷︷ ︸

n. Taylor polynomial

+
f (n+1)(β)

(n + 1)!
(x − x̄)n+1

︸ ︷︷ ︸
error term

If in the initial value problem the function f is n times differentiable in a
neighbourhood of (ξ, η), then the unknown function x is (n + 1) times
differentiable in a neighbourhood of ξ and Taylor’s theorem entails the
existence of β between t and ξ such that

x(t) = x(ξ) +
x ′(ξ)

1!
(t − ξ) + · · ·+ x (n)(ξ)

n!
(t − ξ)n +

x (n+1)(β)

(n + 1)!
(t − ξ)n+1.
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Taylor series method, Euler’s method

Taking into account the previous expression for x , the partial sum

x̃(t) = x(ξ) +
x ′(ξ)

1!
(t − ξ) + · · ·+ x (n)(ξ)

n!
(t − ξ)n

is an approximate solution of the initial value problem for which

|x(t)− x̃(t)| =
1

(n + 1)!

∣∣∣x (n+1)(β)(t − ξ)n+1
∣∣∣ ≤ K

∣∣∣(t − ξ)n+1
∣∣∣ =: O

(
(t − ξ)n+1

)
if the (n + 1)th derivative is bounded.

Definition

Let g : I → R and f : I → R be two functions. One can write g = O(f ) if
and only if there is a positive constant K such that for all sufficiently
large t

|g(t)| ≤ K |f (t)|.
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Taylor series method, Euler’s method

Differentiating the ODE one can get different order approximation of the
solution of the initial value problem. The firs order approximation is
called Euler’s method.

For example the second order approximation is

x(ξ) = η, x ′(ξ) = f (ξ, η), x ′′(t) =
∂f (t, x)

∂t
+
∂f (t, x)

∂x
f (t, x)⇒

x ′′(ξ) =
∂f (ξ, η)

∂t
+
∂f (ξ, η)

∂x
f (ξ, η).

One can derive higher order Taylor approximations in a similar way
resulting more complex formulae.
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Taylor series method, Euler’s method

If n = 1, then

x(t) = x(ξ) + x ′(ξ) (t − ξ)︸ ︷︷ ︸
=:h

+O((t − ξ)2) = η + hf (ξ, η)︸ ︷︷ ︸
Euler approximation

+O(h2).

Euler’s method Let’s try to approximate the solution of the initial value
problem on the interval[ξ, t̄ ]. Let h be given as h := t̄−ξ

n for a fixed
n ∈ N. Than the iteration scheme is the following:

t0 = ξ, x0 = η,

ti+1 = ti + h, xi+1 = xi + hf (ti , xi ), i = 0, . . . , n − 1.
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Taylor series method, Euler’s method

Exercise
Determine the approximate solution of the following initial value
problems using Euler’s method on the interval I with step size h!

ẋ(t) = tx(t), x(0) = 1, I = [0, 1], h = 0.25,

x ′ = 3x(1− x), x(0) = 0.1, I = [0, 2.5], h = 0.5.
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Taylor series method, Euler’s method

Example

Approximate solution of the initial value problem x ′ = x , x(0) = 1 with
Euler’s method on the interval [0, 1] with step sizes h = 0.1 and h = 0.05:
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Taylor series method, Euler’s method

If n = 2, then with the previously defined h we get

x(t) = η + hf (ξ, η) +
h2

2!

(
∂f (ξ, η)

∂t
+ f (ξ, η)

∂f (ξ, η)

∂x

)
︸ ︷︷ ︸

second order Taylor approximation

+O((t − ξ)3)

Taylor’s method if n = 2

Assume that we would like to approximate the solution of an initial value
problem on the interval [ξ, t̄ ]. Let h := t̄−ξ

n for a fixed n ∈ N. Then the
iteration is the following:

t0 = ξ, x0 = η,

ti+1 = ti + h, xi+1 = xi + hf (ti , xi ) + h2

2!

(
∂f (ti ,xi )
∂t + f (ti , xi )

∂f (ti ,xi )
∂x

)
,

i = 0, . . . , n − 1.
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Taylor series method, Euler’s method

Definition
The quantity

gi :=
x(ti+1)− x(ti )

h︸ ︷︷ ︸
≈x′(ti )

−f (ti , x(ti ))

is said to be the local error of Euler’s method. A numerical method for
the initial value problem (1)-(2) is called pth order consistent in the
class F (p > 0), if

|gi | = O(hp)

for every f ∈ F .
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Taylor series method, Euler’s method

Local error of Euler’s method
One can prove that in the class of continuously differentiable functions
Euler’s method is first order consistent, that is to say

|gi | ≤
h

2
max
t∈[ξ,t̄]

|x ′′| = O(h).

Definition
The difference between the exact and the numerical quantity

Gi := x(ti )− xi

is said to be the global error of Euler’s method.
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Taylor series method, Euler’s method

The exact and the numerical solutions of the initial value problem
x ′ = sin(3t) + cos(3t), x(0) = 0 with Euler’s method and Taylor series
method (n = 2) with 40 and 100 nodes.
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Taylor series method, Euler’s method

Definition

A numerical method for the initial value problem (1)-(2) is called pth
order convergent in the class F (p > 0), if for all f ∈ F the global
error fulfils

|Gi | = O(hp).

Global error of Euler’s method
One can prove that the global error of Euler’s method in the class of L
Lipschitz functions is

|Gi | ≤ eLti

(
|G0|+

i−1∑
k=0

|gk |h

)
.
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Runge-Kutta methods

Because of their slow convergence the previous methods applied only for
big systems or highly nonlinear systems in practice. One can improve the
performance of Euler’s method with the following simple modification:

Explicit Runge-Kutta scheme I

We would like to approximate the solution of an initial value problem on
an interval [ξ, t̄ ]. Let h := t̄−ξ

n for a given n ∈ N. Then the iteration
scheme is the following:

t0 = ξ, x0 = η, ti+1 = ti + h,

k1 = f (ti , xi ), k2 = f
(
ti + h

2 , xi + h
2k1

)
, xi+1 = xi + hk2,

i = 0, . . . , n − 1.

Pál Burai Mathematics for Engineers II. lectures



Runge-Kutta methods

The approximation of the initial value problem

x ′ = x , x(0) = 1

on the interval [0, 3] with Euler’s method and Runge-Kutta scheme I if
the partition contains 10 points.
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Runge-Kutta methods

Explicit Runge-Kutta scheme II

Besides of the earlier assumptions (Runge-Kutta I) we have

t0 = ξ, x0 = η, ti+1 = ti + h, k1 = f (ti , xi ),

k2 = f

(
ti +

h

2
, xi +

h

2
k1

)
, k3 = f (ti + h, xi − hk1 + 2hk2) ,

xi+1 = xi +
h

6
(k1 + 4k2 + k3), i = 0, . . . , n − 1.

Numerical solution of initial value problem corresponding to the Bernoulli
equation x ′ = −x

1+t − (1 + t)x4, x(0) = −1 with 3 and 10 nodes.
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Runge-Kutta methods

Explicit Runge-Kutta scheme III

Besides of the earlier assumptions (Runge-Kutta I) we have

t0 = ξ, x0 = η, ti+1 = ti + h, k1 = f (ti , xi ), k2 = f

(
ti +

h

2
, xi +

h

2
k1

)
,

k3 = f

(
ti +

h

2
, xi +

h

2
k2

)
, k4 = f (ti + h, xi + hk3),

xi+1 = xi +
1

6
(k1 + 2k2 + 2k3 + k4), i = 0, . . . , n − 1.

General explicit Runge-Kutta scheme

kj = f

(
t + haj , x + h

j−1∑
l=1

bj,lkl

)
, j = 1, . . . , s,

where the constants characterize the method and they are independent from f ,
from x and from h. One can prove that the magnitude of both the local and
the global error is O(hs) (assuming reasonable conditions).
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Solution of higher order equations

We rewrite an nth order equation into a system of first order ODEs
containing n equations. Then we get the separable equation

Y ′ = f (t,Y )

(here Y T = (y1, . . . , yn)). One can apply now formally the earlier
numerical methods for this equation. Example: Let’s consider the
second order equation x ′′ − 8x ′ + 16x = 0, x(0) = 1, x ′(0) = 5, then the
solution is x = e4t(1 + t). Let’s introduce the notations y1 = x , y2 = x ′.
These functions fulfil the following system of ODEs with the initial
condition below.

y ′1 = y2, y1(0) = 1

y ′2 = 8y2 − 16y1, y2(0) = 5

In vector notation[
y ′1
y ′2

]
= Y ′ = f (t,Y ) =

[
y2

8y2 − 16y1

]
, Y (0) =

[
1
5

]
.
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Solution of higher order equations

Solution with successive approximation

Y0 =

[
1
5

]
, Y1 = Y0 +

t∫
0

f (s,Y0)ds =

[
1
5

]
+

t∫
0

[
5

40− 16

]
=

[
1 + 5t

5 + 24t

]

Y2 = Y0 +

t∫
0

f (s,Y1)ds =

[
1
5

]
+

t∫
0

[
5 + 24s

40 + 192s − 16− 80s

]
ds

Y2 =

[
1 + 5t + 12t2

5 + 24t + 56t2

]
x = y1 ≈ 1 + 5t + 12t2
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Solution of higher order equations
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Solution of higher order equations

Solution with Euler’s method on the interval [0, 1] with step size
h = 0.25:
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Project

The projects should be done by groups containing at most three
students.

Numerical solution of an initial value problem involving a nonlinear
ODE with two different methods, using different number of nodes
on the given interval. Write Matlab code for the solution. Making
figures about the approximations. Documentation (5-10 pages).

Numerical solution of an initial value problem involving a higher
order ODE using different number of nodes on the given interval.
Write Matlab code for the solution. Making figures about the
approximations. Documentation (5-10 pages).
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